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Abstract

A theory for the prediction of the size dependence of torsional rigidities of nanosized structural elements is devel-
oped. It is shown that, to a very good approximation, the torsional rigidity (D) of a nanosized bar differs from the
prediction of standard continuum mechanics (D.) as (D — D.)/D. = Ahy/a where A is a non-dimensional constant, a is
the size scale of the cross-section of the bar and /, is a material length equal to the ratio of the surface elastic constant to
the bulk elastic constant. The theory developed is compared with direct atomistic calculations (‘“‘numerical experiment’)
of the torsional rigidity bars made of several FCC metals modeled using the embedded atom method. Very good
agreement is obtained between theory and simulation. The framework presented here can aid the development of design
methodologies for nanoscale structural elements without the need for full scale atomistic simulations. © 2002 Published
by Elsevier Science Ltd.
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1. Introduction

The demand for smaller and faster devices have encouraged technological advances resulting in the
ability to manipulate matter at micro and nanoscales that have enabled the fabrication of micro/nanoscale
electromechanical systems. While MEMS technology is now a well established area, nanoelectromechanical
systems (NEMS) have recently made their appearance in literature (see, for example, Roukes, 2000). A key
feature of NEMS that make them attractive are their high fundamental frequencies while affording small
force constants. Nanosized bars and tubes are produced in a variety of ways with materials such as SiC,
MoO; and C (carbon nanotubes) (see Yakobson and Smalley, 1997; Terrones et al., 1999; Sheehan and
Lieber, 1996). These nanosized elements have found many technological uses, for example, as probes of
scanning probe microscopes (Dai et al., 1996), in altering properties of bulk materials in the form of
whisker additions (Kuzumake et al., 1998) etc.

In the recent past, several groups have reported studies on the mechanical behaviour nanosized bars and
nanotubes. Wong et al. (1997) performed experiments on SiC beams while Poncharal et al. (1999), and
more recently Gao et al. (2000) have reported experiments where the elastic modulus of carbon nanotubes is
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measured using dynamic techniques. A careful study of these reports show that the elastic moduli of such
nanosized structural elements depend on their size. Attempts to explain the size dependent behaviour has
been through direct atomistic computer simulation of these structures (Robertson et al., 1992; Garg and
Sinnott, 1998; Garg et al., 1998). These studies have reported size-dependent elastic moduli computed from
atomistic simulations. Similar studies of shape dependence of properties have also been reported on
nanoparticles (Yannouleas et al., 2001).

Miller and Shenoy (2000) developed a simple model to explain the size dependence of the elastic rigidities
of nanosized structural elements. These size dependences were attributed to the heterogeneities in the
atomic environments introduced by the bounding free surfaces of the structural elements. Thus, as the size
of the structure becomes smaller the presence of surfaces have to be accounted for in modeling strategies.
Developing this premise, Miller and Shenoy (2000) showed that the differences between the rigidities (D) of
these small elements and those predicted by continuum mechanics (D.) can be expressed as

D-D,
DC _Aa (1)

where A4 is a non-dimensional constant that depends on the geometry of the structure, a is the size scale of
the structural element (for example, the cross-sectional width of a bar), and /4, is a material length that is the
ratio of the surface elastic constant of the bounding surfaces of the structure and the bulk elastic constant of
the material. Thus, the size dependence of the rigidities can be predicted by obtaining the material pa-
rameter /i, and the non-dimensional constant A. Typically, &, can be obtained from a small atomistic
simulation and A4 can be calculated analytically. Thus the need for full scale atomistic simulations of
structures (which is an expensive proposition) is obviated. Miller and Shenoy (2000) applied this model to
study the elastic properties of nanosized bars, plates and beams and demonstrated the strength of the model
by comparison with direct atomistic calculations.

An important mode of deformation of bar-like structures is torsion; for example, the probe of a scanning
probe microscope is subjected to bending and torsion. It is therefore important to develop a model for the
torsional rigidities of nanosized elements; this is the aim of the present paper. An augmented continuum
theory of torsion accounting for the presence of free surfaces is developed and the size dependence of the
rigidity is derived analytically. A perturbative scheme is developed for solving the resulting boundary value
problem which provides a simple method to evaluate the size dependence of the torsional rigidity. It is
shown that, in general, the size dependence of the rigidity D is of the form

D—-D.,  h ho\?
421822 2
D, a <> + 2)

where A4, B, etc. are non-dimensional constants and 4, = S/G where S is the surface shear modulus and G is
the bulk shear modulus. The perturbative method also provides a general framework for the calculation of
the non-dimensional constants A4, B, ... that depend only on the geometry of the cross-section of the bar.
For the case of square bars of side 2a, the theory provides that size dependence of torsional rigidity to be
very well approximated by

D — D, h
~ 42 (3)
D, a

These theoretical results are then compared with direct atomistic simulations (which serve as numerical
experiments) of torsion of square bars of FCC metals. The methodology required for the atomistic sim-
ulation of torsion is also developed here. The agreement theory and numerical experiment (atomistic
simulations) is excellent.
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The paper is organised as follows. Section 2 contains the augmented theory of torsion. Section 3 contains
the details of simulation methodologies, the results of which are reported and discussed in Section 4. The
paper in concluded in Section 5 in which several important directions of future work are identified.

2. Theory
2.1. Augmented continuum theory

It was shown by Miller and Shenoy (2000) that the elastic properties of nanoscale structural elements
such as plates, bars and beams can be explained using a augmented continuum theory that accounts for the
energetics of deforming inhomogeneities such as surfaces and corners, the effects of which are significant
when the length scale of the structure approaches the atomic scale. Several authors had previously utilized
continuum theories of solids with surface effects (Gurtin and Murdoch, 1975; Rice and Chuang, 1981;
Cammarata, 1994) to study a variety of problems ranging from diffusive cavity growth in stressed solids to
stability of stressed epitaxial films. The formulation outlined in Miller and Shenoy (2000) is briefly reca-
pitulated here for the sake of completeness and to set the notation.

The body 4, described by coordinates x;, considered in the augmented continuum theory is bounded by
a surface .. It is assumed that the surface % is piecewise flat (this assumption eliminates the need to
consider contravariant and covariant components of surface tensors) and is described by coordinates x, for
each flat face. The bulk stress tensor in the body # is denoted by ¢;; and the surface stress tensor by 1.
Mechanical equilibrium of a bulk material element implies that the bulk stress tensor satisfies (with no body
forces)

i, =0 (4)
Equilibrium of a surface element necessitates that

Topp + 2 =0 (5)

TopKap = G4, (6)

where #; is the outward normal to the surface, £, is the negative of the tangential component of the traction
t; = o;n; along the « direction of surface %, and r,; is the surface curvature tensor. The assumption of the
piecewise flat surfaces implies that the surface curvature vanishes everywhere along the surface except at
corners and edges which have to be treated separately. It must be noted that the assumption of piecewise
flat surface is merely for the sake of mathematical simplicity; the present theoretical framework is valid for
curved surfaces as well.

The kinematics of the body is described by the displacement field u; defined at every point in the body.
The strain tensor ¢; in the body is obtained using a small strain formulation as

1
€ =5 (ty + ) (7)

The surface strain tensor e, is derived from the bulk strain tensor ¢; such that every material fibre on the
surface has the same deformation whether it is treated as a part of the surface or as a part of the bulk, i.e.,
the surface strain tensor is compatible with the bulk strain tensor.

The final ingredient of the augmented continuum theory is the constitutive relations that relate the
stresses to strains. The bulk is considered to be an anisotropic linear hyperelastic solid with a free energy
density W defined as

W (ey) = sCimeijeu (8)



4042 V.B. Shenoy | International Journal of Solids and Structures 39 (2002) 4039-4052

and the stresses are derived as
o
0y
where Cjy; is the bulk elastic modulus tensor. In this framework the bulk free energy vanishes for the
unstrained solid. Constitutive relations for the surface stress tensor are more involved. The surface stress
tensor is related to the surface energy y as

oy

Top ZW/(S,(/;—FE, (10)

(977 = Cijki€r (9)

a relation which is generally attributed to Gibbs (Cammarata, 1994). The surface stress tensor can be
expressed as a linear function of the strain tensor as

Tat[f = Tgfg + Sc{ﬁ",'éeyﬁ (l 1)

where rgﬁ is the surface stress tensor when the bulk is unstrained (obtained from (10) with €,5 = 0) and S,,s
is the surface elastic modulus tensor. This is an important quantity in that the size dependence of elastic
properties will be shown to be determined by the ratio of a surface elastic constant and the bulk elastic
constant. The constitutive constants Cy,; and S,4, are external to the augmented continuum theory; in this
paper these are determined from atomistic models of the materials considered.

2.2. Augmented theory of torsion of bars

The continuum theory of torsion of bars is a part of classical theory of elasticity attributed to St. Venant
and Prandtl and is treated in much detail by Sokolnikoff (1956). In this section we develop a theory of
torsion based on the augmented theory of last section which includes surface effects. Corner effects are
neglected in this treatment.

Fig. 1 shows the cross-section of the bar 4 bounded by a surface . Attention is restricted to simply
connected cross-sections for the sake of simplicity. The outward normal to % is denoted by n and s is the
tangent vector to & with n-s = 0. Application of a torque 7 to the bar produces a twist per unit length o;
the aim of the analysis is to obtain a relationship between 7 and o. The kinematics is described by the
displacement field as

M1(x1,xz,x3) = 0<¢>(X2,X3)
uz(xl,xz,x3) = —X1X3 (12)

u3(x1,x2,x3) = 0X1X3

4
&£y

S

Fig. 1. Cross-section of bar considered in the augmented continuum theory of torsion.
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where ¢ is the warping function. The only non-vanishing strain components derived from these displace-
ments are

o0 o
612(X27x3) :E(G_Z_x3>’ 613(x27x3) Zz(a—x}—sz) (13)
The bulk material is assumed to be a linear elastic solid and thus the bulk stresses are related to the strain
via

O1p = 2G612, 013 = 2G613 (14)
where G is an appropriate shear modulus (for example, if the ‘1’ direction corresponds to the (100)
direction in an FCC crystal, G = Cy4). The only non-trivial equilibrium equation in the bulk is

dc1» | Ooys

L4 15

x| on (15)

Eq. (15) is identically satisfied on the introduction of a stress function  (after Prandtl) such that

0 0
g1 = GO(a—;C/Z, g13 = —GO(a—;C/; (16)
On substituting the expressions for the stresses (16) in (14) and using (13) it is found that the stress
function satisfies

Py Y
T e (17)
in the bulk.

The surface is parametrised by the coordinate x; and distance s measured along the tangent vector s. The
pertinent component of surface stress is 7;, where s stands for the s direction in Fig. 1 and satisfies the
surface equilibrium equation (5)

afls
Os

The second surface equilibrium condition (6) is identically satisfied since x,; = 0. The “‘surface body
force” fi is given as

fl = - = —(Glznz + 013713) = —Ga<%n2 —%I’Q) = —GOC(%S@ +%S2) = —Gaaa—l// (19)

Ox3 0x, s

+/1=0 (18)

The surface stress 7y is related to the surface strain as
Tis = 2S€1S (20)

where S is an appropriate surface shear modulus (¢}, can be taken to be zero with out loss of generality),
ie.,

_ _ _ o12 013 _ oy oy B oy
Tis —2S61S—2S(—612n3+613n2) —ZS(—%}% —‘r%nz) = —Soc(a—xznz—&-a—mm = —SCZ& (21)

Substituting (19) and (21) in (18) the boundary condition on . for i is obtained as

d Sy Soy
Srres)=0 = vigg=c >
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where C is a constant along the boundary. It is assumed that S does not depend on s, i.e., all the bounding
planes are assumed to be crystallographically equivalent.

The torsional rigidity of the bar can be computed as follows. The torque 7 has contributions from the
bulk 4 and the surface & and is given as

T:\/(X20'137X3012)dXQdX3+/ Tls(xan +X3}’l3)dS
B s

Evidently, the constant C can be chosen to be zero. The torsional rigidity D can be obtained by solving
the mixed boundary value problem

0? o?
o 112/ + ™ lg =-2 in4
$a (24)
v + lp =0 onY¥
and substituting for ¥ in the expression
D= 2G/ Y dxy diy (25)
i

Clearly, the theory reduces to the standard theory of torsion when S is set to zero. It is also clear that the
key parameter that determines the atomistic surface effects that affect the torsional rigidity is the material
length-scale %, defined by the ratio of the surface shear modulus S and the bulk shear modulus G, i.e., by

b= (26)
In Section 2.3, a perturbative solution to the boundary value problem (24) will be developed and a
general formula for the size-dependent torsional rigidity will be obtained.

2.3. Perturbative solution

The general perturbative solution will be developed in a non-dimensional form. To this end, the ge-
ometry of the cross-section of the bar is assumed to be characterised by a length scale a (for example, if the
cross-section is a square, a can be chosen as one half of the side of the square). The following non-
dimensional quantities are introduced

=V eno,n 27)
a a a
In terms of these non-dimensional quantities, the boundary value problem (24) can be recast as
V¥=-2 in%
(28)

Y+ ﬂa—lp =0 onY¥
on
where V2 = 02/0& 4 02/on* and the rigidity is

D

G = A‘Pdfdn, (29)
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with
ho

a

the non-dimensional parameter that governs the extent of surface effects. When f = 0, the boundary value
problem is solved by the non-dimensional stress function ¥, and the torsional rigidity is
D
=2 [ ¥,déd 31
=2 [ wodzay &)

where the subscript ‘¢’ is used to denote that standard continuum value of the torsional rigidity.
When f # 0, the non-dimensional stress function can be expanded in a perturbative series in f§ as

¥ =W+ ¥+ F¥ - (32)
Since ¥ solves the boundary value problem (28), it follows that
BV, 4+ BV, 4 =0 (33)
in 4 and
aql() 2 aqll
Y+ — Yy +— =0 34
B(1+an>+ﬂ<z+an)+ (34)
on %. Since the perturbative expansion (32) is valid for all values of f3, (33) and (34) imply that
V¥, =0 on % with ?’1:—% on ¥ (35)
n
V¥, =0 on % with ?’2:—% nY (36)
n
Y
VW, =0 on 4 with ¥ — — L on (37)
n

which is a sequence of Dirichlet boundary value problems. Thus, the solution of the boundary value
problem (28) can be obtained to any desired accuracy in the parameter f, and the torsional rigidity ob-
tained as

D
@:AO+A1[¥+A2BZ+~~ (38)
where
P

are constants that depend only on the shape of the cross-section. Since D./Ga* = Ay, a general expression for
the size dependence of the torsional rigidity can be derived as
D — D,
D,

_Ai, A
AN (40)

For cross-sections of a given shape, the constants 4; can be calculated once and for all and the formula (40)
along with (26) and (30) can be used to predict the size dependence of the torsional rigidity. Atomistic
inputs are required only in providing values for S and G. It will be seen in the following sections that the
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value of f in real systems is less that 0.5 and the most important contribution is from the first term on the
right hand side of (40), i.e.,

D—D. Ay, A h
D. A" Ay a

(41)

3. Atomistic simulations

Atomistic simulations are carried out to validate the theory developed in the previous sections. The bars
selected for study have a square cross-section (Fig. 2) made of selected FCC metals (Al, Ag, Cu, Ni) such
that the ‘1’-direction corresponds to the [100] crystallographic direction and 2’ and ‘3’ directions corre-
spond to [0 1 0] and [0 0 1] crystallographic directions respectively, i.e., the bounding free surfaces are planes
of the {100} family.

Two sets of simulations are carried out. In the first set, the constitutive constants G = Cy4 (bulk shear
modulus) and S the surface elastic constant for surface shear of the {100} surface are evaluated atomis-
tically; these are the parameters required as input to the theory developed. In the second set of simulations
the torsional rigidity is directly calculated using atomistic simulation of nanoscale torsion. These results are
then compared with the theoretical results of torsional rigidity in Section 4.

The atomistic model used in the present study is the embedded atom method (EAM) developed by Daw
and Baskes (1984). The elements Ag, Cu, and Ni are modeled using the EAM potentials of Oh and Johnson
(1988) and Al is modeled with potentials developed by Ercolessi and Adams (1994).
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Fig. 2. Atomistic system used for the simulation of torsional response.
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3.1. Determination of surface elastic constants

The surface elastic constants are determined as follows. A block of atoms are stacked in an FCC crystal
lattice such that the coordinate planes are of the {1 00} family. Periodic boundary conditions are imposed
in the ‘I’ and 2’ directions alone simulating bounding free surfaces of {1 00} family in the ‘3’ direction. The
positions of the atoms are changed to correspond to a deformation gradient tensor F = I + ee; ® e, that
produces a simple shear by amount € (Z is the identity tensor, and ¢; are the orthonormal basis vectors). The
potential energy of this atomistic system is minimised and the minimised total energy is calculated. To
compute the surface energy, the elastic energy stored in the bulk is subtracted from the calculated total
energy. On performing this simulation for various values of ¢, the surface energy 7 is obtained as a function
of ¢, and the surface elastic constant is calculated by numerical differentiation of this function. It is noted
that to compute the bulk elastic constant G (= Cy4) a similar procedure can be adopted with periodicity
imposed in the ‘3’ direction as well. The results of these simulations are shown in Table 1.

3.2. Atomistic simulations of torsional response

Atomistic simulations used to calculate the torsional rigidities are performed as follows. The simulation
box (0 <x; <4, |x2| < a, |x3] < a) consists of a collection of atoms as shown in Fig. 2 with periodic boundary
conditions imposed in the ‘1’ direction with a periodic length of ¢. The atoms are then displaced according
to the rotation tensor

R(xl) :I+rxx1(e3®e2—e2®e3) (42)

where o is the twist per unit length (o is chosen such that «f < 1, so that the infinitesimal rotation tensor is
sufficiently accurate). With this initial condition, the atomistic potential energy of the system is minimised.
The energy and force computation during the minimisation process is carried forth as follows. To compute
the energy of an atom (say i) near x; = ¢ the position vector of its periodic neighbour (say j), found near
x; = 0 in the box, is required. The position vector of the periodic image of atom j is obtained by applying
the rotation tensor R(¢) to the vector x(j) + fe; where x(j) is the position vector of atom j in the simulation
box. Similarly the periodic neighbour j of an atom i near x; = 0 can be obtained by applying the inverse of
the rotation tensor R(¢). This procedure ensures that the periodicity in the ‘1’ direction is maintained, while
keeping the bar in a twisted position with twist per unit length «. The size £ of the box was chosen to be
greater than twice the cutoff radius of the potential.

Using the procedure above, simulations are carried out for various values of « and the minimised
atomistic total energy E in the simulation box is obtained as a function of «. The torsional rigidity is
calculated using the formula

1 O’E
_1 (43)
£ 0o
Table 1
Properties of materials calculated using EAM potentials
Material ay (A) Cu (eVIA?) S (eV/A?) hy (A)
Al 4.032 0.229 0.481 2.099
Ag 4.090 0.292 0.248 0.849
Cu 3.615 0.474 0.429 0.906
Ni 3.520 0.808 0.763 0.945

ap, the lattice parameter, Cyy, the bulk shear modulus, S, the surface shear modulus and zy = S/Cys.
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The correctness of this procedure is ascertained by choosing various values of ¢ for the periodic distance
and computing D using the above procedure. It is found that D is insensitive to the choice of /.

4. Results and discussion
4.1. Theoretical results for square bars

4.1.1. Exact solution

The exact solution of the boundary value problem (24) for the case of a square bar is obtained in this
section. The square section is assumed to be of side 2a and the solution for the boundary value problem is
obtained in the non-dimensional form (28) where the square occupies the region [¢|<1, ||<1. A
straightforward analysis gives that

sin &, cosh k,n
kn (1 — B 44
Z k2(2k, + sin 2k,) €08 g( cosh k, + fk, sinh kn> (44)
where £, is the nth root of the equation
cosk — fksink =0 (45)

The non-dimensional theoretical torsional rigidity (29) is obtained as

D - sin’ &, sinh k,
Ga* 64 ; k3(2k, + sin 2k,) (1 B k,(coshk, + Pk, sinhk,) > (46)

For the purpose of comparison with atomistic simulations, the non-dimensional warping function
@ = ¢/a? is also derived:

sin k,
® =cn—
(&n)=¢&n—8 ; k2(2k, + sin 2k, )(cosh k, + pk, sinh k,)

sin k, ¢ sinh k,n (47)

4.1.2. Perturbative solution
The function ¥, is obtained by setting f = 0 in the exact solution (44). The function ¥, is obtained by
solving the Dirichlet problem (35) as

<~ sing, tanhg,
Yi(&n) =4 Z 2 coshq, (cos g,¢ cosh g,n + cosh g, cos g,1) (48)

where g, = (2n — 1)n/2. The constant 4; can be calculated as

00 2 2
b h n
Ay =64y FLOTR (49)

o p
The numerical values of 4, (which is calculated from (46) with = 0) and A4, are

Ay = 2.2492, A, = 8.9969 (50)
Thus,

D~ Ay+4,p (51)
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12

Exact
— — - Perturbative _

1.00

Fig. 3. Comparison of the exact (46) and perturbative (51) results for the torsional rigidity.

and

D—D,
D,

Ay ho
~—f=4f=4— 2
loﬁ B P (52)

A comparison between the exact result (46) and the perturbative result (51) is shown in Fig. 3. It is
evident that the perturbative result is a very good approximation of the exact result; even when f§ =1
(which is much larger than that which would appear in systems considered here), the error is only 6.5%.
Thus the perturbative result in the form of (52) is used in comparisons with atomistic results.

4.2. Comparison of atomistic and theoretical results

Fig. 4 shows a comparison between the non-dimensional torsional rigidity computed atomistically and
that predicted by the augmented continuum theory (52). Several points may be noted:

1. It is clear that the atomistically calculated torsional rigidity differs significantly from the predictions of
standard continuum theory. In fact, for an Al bar of width 5 nm the torsional rigidity is about 50% lar-
ger.

2. The non-dimensional difference in torsional rigidity computed atomistically scales very closely as (1/a) in
all the metals.

3. The atomistically computed values are accurately predicted by the theoretical values for Al and Ni (with-
in 10%), while the agreement is fair for Ag and Cu (within 30%).

4. In all cases, the atomistically computed values are larger than the theoretical values, although to varying
degrees in different metals.

It may be argued that the reason for the atomistic values being greater than the theoretical values is the
neglect of corner effects in the theoretical analysis. A simple dimensional analysis indicates that corner
effects must scale as 1/a’; but the atomistic results scale very closely as 1/a. Thus it is clear that corners play
a secondary role in the systems considered here. A more plausible reason for the difference in the theoretical
values and simulation results is the assumption that the surface energy y depends only on surface strain. In
reality the surface energy can also depend on the surface curvature strain b,g, i.e., the difference between the
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Fig. 4. Comparison of the results of atomistic simulations with theoretical results. a, is the lattice parameter.

deformed curvature and the original curvature of the surface. Thus the surface energy must be a function
of both the surface strain tensor and the surface curvature strain tensor; mathematically, y = y(eup, bup).
This idea can be expressed more physically; in the present model, the surface is treated as a membrane,
while a more physically realistic model will be that of a shell with bending stiffness. Additional evidence in
support of this argument is that in the case of bending of plates treated by Miller and Shenoy (2000) the
augmented continuum theory differs by the order of 30% with the atomistic simulations. The plates treated
did not have corners and this effect can only be attributed to the neglect of the bending energy of the
surfaces. Clearly this problem requires a more elaborate theoretical framework and will be taken up for
study in future.

The atomistic simulations of torsion not only allow for the computation of the torsional rigidity but also
provide data for the warping of atomic planes. From the positions of atoms at the configuration of min-
imum energy, the values of non-dimensional warping @ are calculated. The atomistically computed values
of the non-dimensional warping must be independent of the value of « (twist per unit length) according to
the theory. This is indeed found in the simulations, and provides a further check for the theory. The
atomistically simulated warping displacements are then compared with the theoretically predicted values
(47). The result of such an exercise is plotted in Fig. 5. It is evident that the predicted warping is in excellent
agreement with the atomistic result.
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Fig. 5. Comparison of atomistically simulated and theoretical warping function @. The solid lines are the contours of the atomistic
result while the dashed lines correspond to the theoretical calculation (47). The atomistic result is for Al with a/ay = 5 and the the-
oretical result corresponds to f = 0.1.

5. Conclusions

A general framework for the prediction of rigidities of nanoscale structural elements has been developed
and applied to the case of the nanoscale bars in torsion. The key premise of this theory is that the heter-
ogeneities present in such systems can be modeled as surface effects in an augmented continuum theory. A
development of this idea reveals that the material length scale that governs the size dependence of the ri-
gidity is the ratio of the surface elastic constant to the bulk elastic constant. The augmented theory of
torsion developed here is compared with direct atomistic calculations of bars of various metals and is found
to be satisfactory. The author is not aware of any work that reports experimentally measured torsional
rigidities of nanosized bars—indeed, atomistic simulations are used as numerical experiments. Given the
advances in nanotechnology, such experiments are expected to be performed in the near future.

The use of this theory is envisaged as follows. The bulk elastic constants and the surface elastic constants
(for various surfaces) of materials of interest can be calculated and tabulated. The expressions for the con-
stants that appear in the perturbative expansion in size dependence of the torsional rigidity can be worked out
for a host of cross-sectional shapes once and for all. A collection of such information will be useful for the
designers of nanomechanical systems in that the need for direct atomistic simulations of nanoscale structures
is obviated. The work of Miller and Shenoy (2000) along with the present work provide a complete frame-
work for the prediction of rigidities of nanoscale structural elements in extension, flexure and torsion.

Several points for future work are noted. The atomistic model used in this study, EAM, is known to
be inaccurate with applied to interfacial properties. This, of course, does not invalidate the present work
since the parameters used in the theory and the simulation results are obtained from the same EAM model.
To obtain accurate values of surface elastic constants more sophisticated atomistic models such as den-
sity functional theory may be applied. Another important point to be noted is that thermal effects are not
accounted in the calculation of the surface elastic constants. Also, the model developed here treats the
surface as a membrane while a more realistic model will have to additionally account for the bending
stiffness of the surface. Results of investigations along the afore mentioned directions will be reported in
future publications.
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